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ABSTRACT
Contributing to the toolbox for interpreting election results, we
evaluate the robustness of election winners to random noise. We
compare the robustness of different voting rules and evaluate the
robustness of real-world election winners from the Formula 1World
Championship and some variant of political elections. We find
many instances of elections that have very non-robust winners and
numerous delicate robustness patterns that cannot be identified
using classical and simpler approaches.
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1 INTRODUCTION
Voting is a convenient and powerful framework to aggregate pref-
erences. It has many real-world applications ranging from political
elections, through evaluation panels deciding on which research
projects to fund, and televoting in TV shows, to aggregating the
results of sport competitions. Interestingly, independent of the ap-
plication, one regularly, and emotionally, debated matter is by “how
much” the winning candidate had won the election. Remarkably,
studies have found that there are more extremely close elections
than one might intuitively expect. For instance, there is a list of 313
political elections on Wikipedia where the election was decided by
less than 0.1% of all voters [18]. Moreover, Mulligan and Hunter
[23] reported that in state elections in the United States one in
every 15.000 voters casts a decisive vote. Motivated by this, there is
a rich body of theoretical literature on the likelihood that elections
are decided by a single vote [1, 3, 11, 16, 17, 21, 22, 33].
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But what is the relevance of close elections beyond being a topic
people like to argue about? The main underlying assumption here
is that the recorded votes in the election capture reality only ap-
proximately. For instance, it might be the case that some voters
cast their votes in a rush or without having enough information
available to them, voters were unable to participate in the election,
or votes were incorrectly recorded due to technical errors (which
indeed happen sometimes [24, 31]). If an election is detected to be
close, various counter-measures can be taken: For instance, it is
possible to do a recount or to audit the election results [25, 27–29],
to continue discussions about the election issue, or to collect further
votes. Even if one assumes that the election result is “correct”, by
how much a candidate won also influences its legitimacy and credi-
bility, in particular considering that voters might change their mind
over time. To sum up, a reliable estimate for the lead of an election
winner has the potential to increase the fairness and transparency
of elections, as it allows for a better interpretation of election results
and the initiation of possible countermeasures.

But what does it mean for an election to be close? In political
elections, Plurality voting is often used. Here, each voter awards
one point to its most preferred candidate and the candidate with the
most points wins. For Plurality (and also for arbitrary scoring-based
rules) a natural and common measure to assess the closeness of an
election is the difference between the score of the election winner
and the candidate finishing in the second place. A more fine grained
version of this notion is the margin of victory, which is defined as
the minimum number of voters that need to change their votes to
change the election outcome [10, 13, 19, 32]. However, both of these
concepts are too “coarse” in certain situations. To illustrate this,
consider an election E containing 50 times the vote a ≻ b ≻ . . .
and 49 times the vote b ≻ · · · ≻ a, and an election E ′ containing
50 times the vote a ≻ · · · ≻ b and 49 times the vote b ≻ a ≻ . . .
(we write a ≻ b to indicate that a is preferred to b and “. . . ” to
indicate that we rank all remaining candidates in some arbitrary
ordering). While in both elections the score difference and margin
of victory under Plurality is one, examining the votes more closely,
the situation in these two elections is quite different: In E, in order
for b to win the election, only one of 50 voters needs to slightly
change its mind (by swapping its two most preferred candidates).
In contrast, in E ′, in order for b to win the election, at least one
of 50 voters needs to drastically change its mind by ranking its
previously last-ranked candidate in the first position (plus there
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are 49 voters where a can easily gain a point). To sum up, both the
score difference and the margin of victory do not take into account
that small changes are more likely than large ones. Further, both
measures suffer from the drawback that they focus on the worst
case (e.g., for the margin of victory it does not make a difference
whether there is only one specific voter that can change the election
outcome by modifying its vote or whether multiple voters have
this power) and not on the average case, which is probably the
practically more relevant one.

In this paper, following the works of Boehmer et al. [4] and
Baumeister and Hogrebe [2], we study a more fine-grained ro-
bustness measure: We analyze how the winning probabilities of
candidates behave if we start to perturb the election by performing
some swaps of adjacent candidates in some votes. How quickly the
winning probability of the original election winner decreases as
we move further and further away from the original election sheds
some light on this winner’s robustness. Herein, we assume that
changes are equiprobable and, thus, affect each voter and each part
of the vote with the same probability. Moreover, we assume that the
probability of replacing a vote by a new one is anti-proportional
to the swap distance between the two. For this, we make use of
the famous Mallows noise model [20] (see Section 3 for a detailed
description of our approach). One can thus interpret our approach
as a tool to measure the robustness of election winners against
random equiprobable noise.

Recently, Boehmer et al. [4] conducted some experiments on the
winning probabilities of candidates under Plurality and Borda on
synthetic elections if elections are perturbed. Their results indicate
that some elections have extremely non-robust winners and that
a winning-probability based approach offers a different and more
nuanced view on the robustness of election winners than estab-
lished, simpler measures. In this work, we aim for comparing the
robustness of different voting rules and conducting an in-depth
analysis of the robustness of winners in real-world elections.

1.1 Related Work
Closest works related to ours are the papers of Baumeister and
Hogrebe [2] and Boehmer et al. [4]. Both study the computational
complexity of computing the winning probabilities of candidates
if we replace each vote with one sampled from some distribution.
Among other models, Baumeister and Hogrebe [2] considered a
Mallows-based approach as used in this paper from a theoretical
perspective: For some given ϕ ∈ [0, 1], each vote v is replaced by a
vote sampled from a Mallows distribution with center vote v and
dispersion parameter ϕ, i.e., a vote v ′ is sampled with probabil-
ity proportional to ϕκ(v;v ′) (the swap distance κ(v,v ′) between v
andv ′ is the number of swaps of adjacent candidates that are needed
to transformv intov ′). Boehmer et al. [4] studied the related compu-
tational problem of counting elections at some given swap distance
from a given initial election where some given candidate wins (see
Section 3 for details). In fact, Baumeister and Hogrebe [2] showed
these two problems to be equivalent from the computational per-
spective. Together, Baumeister and Hogrebe [2] and Boehmer et al.
[4] proved strong (parameterized) intractability results for these
problems for Plurality and Borda.

The problem of Boehmer et al. [4] can be phrased as the count-
ing variant of the Swap Bribery problem. In Swap Bribery, we
are given an election, a designated candidate p, and a budget k ,
and the question is whether we can perform k swaps of adjacent
candidates in some votes to make p an election winner. Bribery
problems in elections have been introduced by Faliszewski et al.
[14] and have been extensively studied since then (see the overview
of Faliszewski and Rothe [15]). The idea to use swap bribery for
evaluating the robustness of election winners is due to Shiryaev
et al. [26] (and has also been used in other contexts [6, 7, 9]): In
the Destructive Swap Bribery problem we want to prevent a
given candidate from winning the election by performing as few
swaps as possible. The minimum cost of a successful destructive
swap bribery can then act as a robustness measure (however, like
the margin of victory and score difference, this measure is focused
on the worst case). Boehmer et al. [4] observed that for Borda and
Plurality the minimum cost of a destructive swap bribery might be
disconnected from their winning-probability based approach (see
Section 3).

1.2 Our Contributions
The main goal of this paper is to better understand the robustness of
election winners against random equiprobable noise. In particular,
we analyze what makes an election winner robust and how this is
influenced by the voting rule used. We address this goal in multiple
steps, thereby significantly extending the experimental work of
Boehmer et al. [4], who only considered the robustness of winners
under the Plurality and Borda voting rules in synthetic elections: In
Section 3, we present our approach for measuring the robustness of
election winners and compare it to the approach used by Boehmer
et al. [4]. In essence, our measure is very similar but easier to handle
and compute. In Section 4, we compare the robustness of different
voting rules on synthetic data. Generally speaking, out of the con-
sidered rules, Copeland tends to produce the most robust winners,
then comes Borda, then Bucklin, then STV, and Plurality produces
the least robust winners. In Section 5, we analyze the robustness of
real-world elections from two different sources, i.e., the Formula
1 World Championship and some form of political elections. We
identify many elections with winners that are remarkably sensitive
to random equiprobable noise. For example, in some editions of
the Formula 1 World Championship the original winner loses with
22% probability if we make only an expected number of 5 random
swaps of adjacent candidates in the whole election.

Furthermore, throughout the whole paper, we observe in differ-
ent places that our approach allows one to identify patterns that are
invisible when considering simpler robustness measures such as
the score difference, and that the non-robustness of winners can be
of different types. Moreover, we describe how our approach can be
used to distinguish between tied election winners, thereby serving
as a potential tie-breaking mechanism.

2 PRELIMINARIES
Elections. An election is a pair (C,V )whereC = {c1, . . . , cm } is a

set of candidates andV = (v1, . . . ,vn ) is a collection of votes. Each
vote is a strict total order over all candidates. We writev : c1 ≻ c2 to
denote that v prefers c1 to c2, and for a candidate c ∈ C we say that
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v ranks c in the ith position ifv prefers exactly i − 1 candidates to c .
In Section 5, we allow for top-truncated votes, i.e., strict total orders
over subsets of candidates. The implicit meaning of a top-truncated
vote is that the voter prefers all the ranked candidates to all the
unranked ones. For a top-truncated vote, we refer to the number of
candidates the voter ranks as the vote length.

Voting Rules. A voting rule is a function that maps an election to
a subset of candidates that tie as winners of this election. A scoring
vector is a vector s = (s1, . . . , sm ) with si ∈ R for all i ∈ [m] and
s1 ≥ s2 ≥ · · · ≥ sm . A positional scoring rule is defined by a scoring
vector s: Each voter awards si points to the candidate it ranks in the
ith position for each i ∈ [m].1 All candidates with the maximum
summed score win. Two rules that are of particular importance in
our analysis are Plurality, which corresponds to the scoring vector
(1, 0, . . . , 0), and Borda, which corresponds to the scoring vector
(m − 1,m − 2, . . . , 1, 0).

Under the Copeland voting rule, we compute a score for each
candidate and all candidates with the highest score win. A candidate
c gets a point for each candidate d ∈ C \ {c} for which more than
half of the voters prefers c to d and loses a point for each candidate
d ∈ C \ {c} where more than half of the voters prefers d to c .

Under the Bucklin voting rule, for each candidate let ic be the
minimum i ∈ [m] such that more than half of the voters rank c in
one of the first i positions. The candidate for which ic is smallest
wins. If multiple candidates have the minimum ic , say i∗, then the
candidate(s) that appear in the most votes in one of the first i∗
positions win.

Under the single transferable vote (STV) voting rule, we are given
a strict total order ≻t of the candidates as the tie-breaking order. In
each round, we delete the candidate with the minimum Plurality
score. If multiple candidates have the minimum Plurality score, then
the candidate that is ranked last in ≻t is deleted. The last remaining
candidate is the winner of the election. Because we actively apply
a tie-breaking rule for STV, there are no tied winners under STV.

Swap Distance. Given two votes v and v ′ over the same candi-
date set, their swap distance κ(v,v ′) is the number of candidate
pairs on whose ordering v and v ′ disagree (equivalently, this is
the minimum number of swaps of adjacent candidates that are
needed to transform v into v ′). Note that the maximum swap dis-
tance between two votes overm candidates is m(m−1)

2 . The swap
distance between two elections E = (C,V ) and E ′ = (C,V ′) where
V = (v1, . . . ,vn ) and V ′ = (v ′1, . . . ,v ′n ) is

∑n
i=1 κ(vi ,v

′
i ).

(Normalized) Mallows Distribution. For a set C ofm candidates,
the Mallows distribution [20] is parameterized by a central strict
total order v∗ over C and a dispersion parameter ϕ ∈ [0, 1]. It
assigns to each strict total order v overC a probability Dv∗;ϕ

Mallows(v)
that depends on the swap distance between v and v∗. Specifically,
we have: Dv∗;ϕ

Mallows(v) = 1
Z ϕ

κ(v;v∗) with normalizing constant Z =

1 · (1+ϕ) · (1+ϕ +ϕ2) · · · · · (1+ · · ·+ϕm−1). For ϕ = 0, vote v∗ has
probability one and all other voters have probability zero. For ϕ = 1,
all votes are drawn with the same probability. Note that we use the

1For top-truncated votes in an election with m candidates, we still use the original
scoring vector containing m entries. A voter which ranks j ∈ [m] candidates then
awards si points to the candidate it ranks in the i th position for each i ∈ [j].

Mallows distribution in two different ways. On the one hand, as
part of our robustness measure, we use it to perturb a given vote
v ′, which typically means that we replace v ′ by a vote sampled
from Dv ′;ϕ

Mallows. On the other hand, we use it as a model to generate
elections in which case we create an election by drawing multiple
votes from Dv∗;ϕ

Mallows where v∗ is the lexicographic ordering of
candidates.

Unfortunately, as argued by Boehmer et al. [5], the dispersion
parameter ϕ is not easy to interpret. Moreover, elections with dif-
ferent numbers of candidates sampled from Mallows distributions
with the same fixed value of ϕ are in some sense of a fundamen-
tally different nature. That is why we use the normalization of
Mallows model proposed by Boehmer et al. [5]: Here, the Mallows
distribution is parameterized by a normalized dispersion parameter
norm-ϕ ∈ [0, 1], which is internally converted to a value of ϕ, such
that the expected swap distance between a sampled vote and the
central vote is norm-ϕ · m(m−1)

4 . Again, norm-ϕ = 0 leads to v∗
being sampled all the time (the expected swap distance is zero) and
for norm-ϕ = 1 all votes have the same probability (the expected
swap distance is m(m−1)

4 ). However, here, norm-ϕ = 0.5 leads to a
distribution that is in some sense in the middle between these two
extremes, as the expected swap distance between the sampled and
central vote is m(m−1)

8 . Moreover, one value of norm-ϕ leads to the
same expected relative number of swaps for different numbers of
candidates, which will be vital for our purposes.

Thus, using norm-ϕ instead of ϕ basically leads to a rescaling of
the considered range of perturbation. That is, there is a one-to-one
mapping of values of norm-ϕ and values of ϕ. However, as argued
above, norm-ϕ is much easier to use and allows for a more natural
interpretation and comparison of results.

Pearson Correlation Coefficient. The Pearson correlation coeffi-
cient (PCC) is a measure of a linear correlation between two quanti-
ties, where 1means perfect linear proportional correlation, 0means
no linear correlation and −1 means perfect linear anti-proportional
correlation.

3 ASSESSINGWINNER ROBUSTNESS
In this section, we describe how we asses the robustness of election
winners by computing the candidate’s probabilities to win the elec-
tion if voters partly and randomly change their preferences. In this
section, to validate our approach, we briefly mention the results of
some experiments which we conducted on a diverse collection of
800 synthetic elections with 100 voters and 10 candidates collected
by Szufa et al. [30] (this dataset has also been also used by Boehmer
et al. [4]).

Our approach relies on the Mallows model, which is typically
considered as a natural way to add random noise to an election.
To model this, we replace each vote v from the election with a
vote sampled from the Mallows distribution with central votev and
some normalized dispersion parameter norm-ϕ ∈ [0, 1]. Specifically,
for an election E = (C,V ), a candidate c ∈ C , and norm-ϕ ∈ [0, 1],
we let PE;c (norm-ϕ) be the probability that candidate c is a win-
ner of an election that results from replacing each vote v ∈ V

with a vote sampled from Dv;norm-ϕ
Mallows . We refer to PE;c (norm-ϕ)

as c’s winning probability at norm-ϕ and to 1 − PE;c (norm-ϕ) as
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Fig. 1. We plot PE,c (norm-ϕ) (y-axis) for the Plurality voting rule as a func-
tion of norm-ϕ (x -axis) for the four most successful candidates.
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Fig. 2. Average 50%-winner threshold of different
voting rules for elections sampled from theMallows
model with varying norm-ϕ where each sampled
vote is reversed with some probability.

(and thus PE,c (norm-ϕ)) exactly is equivalent to solving an instance of #Swap-Bribery (simply take the number of
elections at swap distance r from E where c wins and divide it by the total number of elections at swap distance r ).

Unfortunately, from the results of Boehmer et al. [4] and Baumeister and Hogrebe [2] it follows that solving
#Swap-Bribery and, thus, computing PE,c (norm-ϕ) is intractable. This is why we resort to a sampling approach: To
compute PE,c (norm-ϕ) for some E = (C,V ), we sample an election by replacing each vote v ∈ V by a vote sampled
from Dv,norm-ϕ

Mallows . We repeat this multiple times and record for each candidate the fraction of sampled elections in which
c is a winner.2 To quantify the robustness of a non-tied election E, we use the 50%-winner threshold introduced by
Boehmer et al. [4], which is the smallest value of norm-ϕ such that the winning probability of the winner of E is smaller
than 50%.3 The 50%-winner threshold thus quantifies how fast the winning probability of the initial winner declines
when we move further and further away from the initial election and can be easily used to compare the robustness
of election winners in different elections. Of course, instead of considering the 50%-winner threshold, one could also
consider the x%-winner threshold (i.e., the smallest value of norm-ϕ such that the winning probability PE,c (norm-ϕ) of
the winner c of E is smaller than x%) for other values of x . However, for all considered voting rules, the 50%-winner
threshold is strongly correlated with the 25%-winner and 75%-winner threshold on the diverse synthetic dataset of
Szufa et al. [30] (the PCC is typically between 0.85 and 0.95). As fixing a single value is advantageous for clarity, we
picked the 50%-winner threshold, since it has a special appeal as it quantifies the perturbation level until which the
initial winner is stronger than all other candidates combined.

2By default, for each election we computed PE,c (norm-ϕ) for norm-ϕ ∈ {0, 0.1, . . . , 1}. For each value of norm-ϕ , we did so by sampling 500 elections
and recording for each candidate the fraction of these elections where it is a winner. To evaluate whether 500 elections are sufficient here, we also reran
some of our experiments with 4000 elections sampled for each value of norm-ϕ and found that the results only marginally changed (in particular, in
all elections, the 50%-winner threshold changed by at most 0.1, which is the smallest observable change). For all visualized elections, we used a finer
resolution by computing PE,c (norm-ϕ) for norm-ϕ = 0.0025 · i for i ∈ {0, 1, 2, . . . , 200} by sampling for each value of norm-ϕ 10 000 elections.
3For STV, we cannot simply compute PE,c (norm-ϕ) by sampling some elections and recording in how many of them c is a winner, because deciding
whether some candidate is a winner under STV in some given election is NP-hard [12]. Thus, a tie-breaking rule needs to be specified. To deal with
this issue, for each run of STV on some election, we sample a strict total order ≻t over all candidates uniformly at random from the set of all strict
total orders and break ties according to ≻t . This in particular implies that as we do 500 runs at norm-ϕ = 0, i.e., we apply STV 500 times to the initial
election with different tie-breaking orders, multiple candidates may have a non-zero winning probability in the initial election. We consider as the initial
winner the candidate having the highest winning probability at norm-ϕ = 0 and for elections where no candidate has a winning probability over 50% at
norm-ϕ = 0, we set the 50%-winner threshold to 0.

6

Figure 1: We plot PE;c (norm-ϕ) (y-axis) for the Plurality vot-
ing rule as a function of norm-ϕ (x-axis) for the four most
successful candidates.

c’s loosing probability, i.e., the probability that c is not a winner.
Notably, for norm-ϕ = 1 each vote has the same probability un-
der the Mallows distribution and, thus, each election has the same
probability of being sampled. This implies that, assuming votes are
complete, all candidates have the same probability of being a win-
ner at norm-ϕ = 1. In the following, we say that a winner is robust
if PE;c (norm-ϕ) does not “quickly” decrease. We often visualize the
winning probabilities of different candidates as line plots. In those
plots, each line represents one candidate and depicts its winning
probability PE;c (norm-ϕ) (y-axis) for different values of norm-ϕ
(x-axis). We only depict the range norm-ϕ ∈ [0, 0.5] as for larger
values of norm-ϕ the sampled elections have less and less similar-
ities to the given one. We depict two example plots in Figure 1.
The election displayed in Figure 1a is sampled from the Mallows
model with norm-ϕ = 1 (so each vote had the same probability of
being sampled). This is also clearly visible in the plot: The winning
probability of the initially winning red candidate quickly decreases.
In Figure 1b, we show a more structured election (sampled from the
Mallows model with norm-ϕ = 0.6), where the winning probability
of the initially winning red candidate stays high even if substantial
random noise is introduced.

Comparing our approach to previous works, Boehmer et al. [4]
followed a related path by computing for a given election E = (C,V )
and candidate c ∈ C the probabilityQE;c (r ) that c is a winner of an
election at swap distance r from E. PE;c (norm-ϕ) and QE;c (r ) are
indeed closely related because PE;c (norm-ϕ) is a weighted average
over QE;c (r ) for different values of r , as shown by Baumeister and
Hogrebe [2]. From a computational perspective, computingQE;c (r )
(and thus PE;c (norm-ϕ)) exactly is equivalent to solving an instance
of #Swap-Bribery (simply take the number of elections at swap
distance r from E where c wins and divide it by the total number
of elections at swap distance r ).

Unfortunately, from the results of Boehmer et al. [4] and Baumeis-
ter and Hogrebe [2] it follows that solving #Swap-Bribery and,
thus, computing PE;c (norm-ϕ) is intractable. This is why we re-
sort to a sampling approach: To compute PE;c (norm-ϕ) for some
E = (C,V ), we sample an election by replacing each vote v ∈ V by
a vote sampled from Dv;norm-ϕ

Mallows . We repeat this multiple times and
record for each candidate the fraction of sampled elections in which

c is a winner.2 To quantify the robustness of a non-tied election
E, we use the 50%-winner threshold introduced by Boehmer et al.
[4], which is the smallest value of norm-ϕ such that the winning
probability of the winner of E is smaller than 50%.3 The 50%-winner
threshold thus quantifies how fast the winning probability of the
initial winner declines when we move further and further away
from the initial election and can be easily used to compare the
robustness of election winners in different elections. Of course,
instead of considering the 50%-winner threshold, one could also
consider the x%-winner threshold (i.e., the smallest value of norm-ϕ
such that the winning probability PE;c (norm-ϕ) of the winner c of
E is smaller than x%) for other values of x . However, for all consid-
ered voting rules, the 50%-winner threshold is strongly correlated
with the 25%-winner and 75%-winner threshold on the diverse syn-
thetic dataset of Szufa et al. [30] (the PCC is typically between 0.85
and 0.95). As fixing a single value is advantageous for clarity, we
picked the 50%-winner threshold, since it has a special appeal as it
quantifies the perturbation level until which the initial winner is
stronger than all other candidates combined.

The main reason why we use PE;c (norm-ϕ) instead of QE;c (r ),
as done by Boehmer et al. [4], is that to compute QE;c (r ) we need
to sample elections that are exactly at a given swap distance from
E. Unfortunately, this sampling procedure is non-trivial and for
more than 20 candidates already takes quite some time to compute
[4]. In contrast to this, the approach used in this paper is much
faster. Furthermore, as already argued above, both PE;c (norm-ϕ)
and QE;c (r ) are conceptually closely related. In particular, each
value of norm-ϕ corresponds to making some expected number of
swaps of adjacent candidates; of course, there is naturally some
variance around this average. However, typically, for some fixed
norm-ϕ, for all swap distances with a non-negligible probability
of getting sampled for this norm-ϕ, in sampled elections at this
distance the winning probabilities of candidates are typically quite
similar (the only exception are very small values of norm-ϕ). To
further analyze the relationship between PE;c (norm-ϕ) andQE;c (r ),
we computed the PCC of the 50%-winner threshold output by the
two approaches on the synthetic dataset of Szufa et al. [30]. For
Plurality, Borda, Copeland, Bucklin, and STV, the correlation is
0.991, 0.982, 0.987, 0.989, and 0.989 respectively. So, overall, for both
approaches the 50%-winner thresholds are very strongly correlated.

2By default, for each election we computed PE,c (norm-ϕ) for norm-ϕ ∈
{0; 0:1; : : : ; 1}. For each value of norm-ϕ , we did so by sampling 500 elections and
recording for each candidate the fraction of these elections where it is a winner. To eval-
uate whether 500 elections are sufficient here, we also reran some of our experiments
with 4000 elections sampled for each value of norm-ϕ and found that the results only
marginally changed (in particular, in all elections, the 50%-winner threshold changed
by at most 0:1, which is the smallest observable change). For all visualized elections,
we used a finer resolution by computing PE,c (norm-ϕ) for norm-ϕ = 0:0025 · i for
i ∈ {0; 1; 2; : : : ; 200} by sampling for each value of norm-ϕ 10 000 elections.
3For STV, we cannot simply compute PE,c (norm-ϕ) by sampling some elections
and recording in how many of them c is a winner, because deciding whether some
candidate is a winner under STV in some given election is NP-hard [12]. Thus, a
tie-breaking rule needs to be specified. To deal with this issue, for each run of STV
on some election, we sample a strict total order ≻t over all candidates uniformly at
random from the set of all strict total orders and break ties according to ≻t . This in
particular implies that as we do 500 runs at norm-ϕ = 0, i.e., we apply STV 500 times
to the initial election with different tie-breaking orders, multiple candidates may have
a non-zero winning probability in the initial election. We consider as the initial winner
the candidate having the highest winning probability at norm-ϕ = 0 and for elections
where no candidate has a winning probability over 50% at norm-ϕ = 0, we set the
50%-winner threshold to 0.
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Finally, note that if we consider an election containing some
top-truncated vote v (such votes appear in our real-world data),
then we do not adjust our procedure and still replace v by a vote
sampled from the Mallows distribution with v as the central vote
and the given normalized dispersion parameter. This means that
candidates that do not appear in the vote in the original election
will never be added to it. We proceed in this way because otherwise
we would need to make some (artificial) assumptions about the
insertion probabilities of the non-ranked candidates. Moreover, in
most of our applications, non-ranked candidates are not included
in some vote “by design”. For instance, in our political elections
not all parties nominate a candidate in each voting district. Note
also that in elections with top-truncated votes, winners can be
both particularly robust and particularly non-robust: If the winner
appears in all votes and all other candidates only appear in few
votes, then the winner will still be the (by far) most probable winner
for any value of norm-ϕ, as even if each vote is replaced with
a uniformly at random sampled one, the winner is most likely
to have the strongest standing in the election. In contrast, top-
truncated votes also open up the possibility for very non-robust
winners: Consider as an example a Plurality election consisting of
two candidates c and d , where x voters rank c in the first position
(and do not rank d at all) and x +1 voters rank d in the first position
and c in the second position. Then d wins the election; however, in
each election at swap distance r > 0, c wins.

4 COMPARING THE ROBUSTNESS OF
DIFFERENT VOTING RULES ON MALLOWS
ELECTIONS

In this section, we conduct a comparison of the robustness of differ-
ent voting rules using synthetic elections generated from a variant
of the Mallows model.

Setup. For different voting rules, for norm-ϕ = 1
15 · i with i =

0, . . . , 15, we sampled 500 elections with 10 candidates and 100
voters from the Mallows model with lexicographic central order
and normalized dispersion parameter norm-ϕ. We reversed each
sampled vote with probability x% for x ∈ {0, 30, 50}. The intuitive
meaning of this model is that the electorate is split into two groups
and the “ground truth” (the central vote in the Mallows model) of
one group is the reversed “ground truth” of the other. Subsequently,
for each sampled election E, for norm-ϕ = {0, 0.1, 0.2, . . . , 1}, we
estimated PE;c (norm-ϕ) using 500 samples.4

Results. In Figure 2, we compare the robustness of five voting
rules. The results draw amixed picture: For reversion probability 0%
which means that we simply consider elections sampled from the
Mallowsmodel, all voting rules become less robust as norm-ϕ grows
(which is also quite intuitive, as the votes in the sampled elections
become more and more different from each other). Moreover, there
is a clear ranking of the voting rules in terms of their robustness
independent of norm-ϕ: Copeland and Borda produce the most
robust results. Bucklin is the third most robust rule, then STV, and

4As reported by Boehmer et al. [5] real-world elections are typically “close” to some
elections generated from the Mallows model. We reverse votes with some probability
because the resulting elections are more interesting from a robustness perspective, as
they illustrate the different behavior of voting rules.
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Fig. 1. We plot PE,c (norm-ϕ) (y-axis) for the Plurality voting rule as a func-
tion of norm-ϕ (x -axis) for the four most successful candidates.
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Fig. 2. Average 50%-winner threshold of different
voting rules for elections sampled from theMallows
model with varying norm-ϕ where each sampled
vote is reversed with some probability.

(and thus PE,c (norm-ϕ)) exactly is equivalent to solving an instance of #Swap-Bribery (simply take the number of
elections at swap distance r from E where c wins and divide it by the total number of elections at swap distance r ).

Unfortunately, from the results of Boehmer et al. [4] and Baumeister and Hogrebe [2] it follows that solving
#Swap-Bribery and, thus, computing PE,c (norm-ϕ) is intractable. This is why we resort to a sampling approach: To
compute PE,c (norm-ϕ) for some E = (C,V ), we sample an election by replacing each vote v ∈ V by a vote sampled
from Dv,norm-ϕ

Mallows . We repeat this multiple times and record for each candidate the fraction of sampled elections in which
c is a winner.2 To quantify the robustness of a non-tied election E, we use the 50%-winner threshold introduced by
Boehmer et al. [4], which is the smallest value of norm-ϕ such that the winning probability of the winner of E is smaller
than 50%.3 The 50%-winner threshold thus quantifies how fast the winning probability of the initial winner declines
when we move further and further away from the initial election and can be easily used to compare the robustness
of election winners in different elections. Of course, instead of considering the 50%-winner threshold, one could also
consider the x%-winner threshold (i.e., the smallest value of norm-ϕ such that the winning probability PE,c (norm-ϕ) of
the winner c of E is smaller than x%) for other values of x . However, for all considered voting rules, the 50%-winner
threshold is strongly correlated with the 25%-winner and 75%-winner threshold on the diverse synthetic dataset of
Szufa et al. [30] (the PCC is typically between 0.85 and 0.95). As fixing a single value is advantageous for clarity, we
picked the 50%-winner threshold, since it has a special appeal as it quantifies the perturbation level until which the
initial winner is stronger than all other candidates combined.

2By default, for each election we computed PE,c (norm-ϕ) for norm-ϕ ∈ {0, 0.1, . . . , 1}. For each value of norm-ϕ , we did so by sampling 500 elections
and recording for each candidate the fraction of these elections where it is a winner. To evaluate whether 500 elections are sufficient here, we also reran
some of our experiments with 4000 elections sampled for each value of norm-ϕ and found that the results only marginally changed (in particular, in
all elections, the 50%-winner threshold changed by at most 0.1, which is the smallest observable change). For all visualized elections, we used a finer
resolution by computing PE,c (norm-ϕ) for norm-ϕ = 0.0025 · i for i ∈ {0, 1, 2, . . . , 200} by sampling for each value of norm-ϕ 10 000 elections.
3For STV, we cannot simply compute PE,c (norm-ϕ) by sampling some elections and recording in how many of them c is a winner, because deciding
whether some candidate is a winner under STV in some given election is NP-hard [12]. Thus, a tie-breaking rule needs to be specified. To deal with
this issue, for each run of STV on some election, we sample a strict total order ≻t over all candidates uniformly at random from the set of all strict
total orders and break ties according to ≻t . This in particular implies that as we do 500 runs at norm-ϕ = 0, i.e., we apply STV 500 times to the initial
election with different tie-breaking orders, multiple candidates may have a non-zero winning probability in the initial election. We consider as the initial
winner the candidate having the highest winning probability at norm-ϕ = 0 and for elections where no candidate has a winning probability over 50% at
norm-ϕ = 0, we set the 50%-winner threshold to 0.

6

Figure 2: Average 50%-winner threshold of different voting
rules for elections sampled from the Mallows model with
varying norm-ϕ where each sampled vote is reversed with
some probability.

Plurality is the least robust rule. The results highlight that rules are
most robust if they take into account the “full election” without local
focus, as this prevents the existence of strong “hidden” contenders.5

Notably, the robustness difference between the rules is largest
for norm-ϕ = 1: For Plurality and STV the average 50%-winner
threshold here is around 0.2, while for the other three rules it is
around 0.4. This large gap is quite remarkable, as these are in some
sense the elections containing the least structure and information.

When we start to reverse the sampled votes with some probabil-
ity, winners become less robust (which is quite intuitive, as in case
we reverse half of the votes, in expectation the first and last candi-
date from the central vote are equally strong). For Plurality and STV
for norm-ϕ ∈ [0, 0.8], if we reverse votes with some probability,
then the average 50%-winner threshold is simply shifted down by
some constant value compared to the 50%-winner threshold if we do
not reverse any votes. In contrast to this, for the other three voting
rules, the robustness of elections for norm-ϕ = 0 and norm-ϕ = 1
becomes more and more similar as we increase the reversion prob-
ability (see the dotted line in Figure 2 for reversion probability 30%
and the dashed line for reversion probability 50%). For reversion
probability 50%, for these rules, elections with norm-ϕ = 1 are even
slightly more robust than the ones for norm-ϕ = 0.

To explain this different behavior of the voting rules, let us
focus for a moment on elections sampled from the Mallows model
with norm-ϕ = 0, central vote c1 ≻ · · · ≻ cm , and 50% reversion
probability: In these elections, around half of the votes, say x , are
c1 ≻ · · · ≻ cm and the other half, say y, are cm ≻ · · · ≻ c1. If
x > y, then c1 is the (strict) majority winner and thus the winner
under Bucklin, Copeland, Plurality, and STV. It is also easy to see
5An example of such a “hidden” contender for both Bucklin and Plurality is the
candidate b from the election E from the introduction (where there are 50 votes with
a ≻ b ≻ : : : and 49 votes with b ≻ · · · ≻ a), as in this election candidate b wins
under both rules as soon as one of the first 50 voters swaps b and a. Moreover, due to
the “local” nature of the rules, a cannot easily gain additional points, as a is ranked
last in all votes where it is not ranked first, and for Plurality it only matters who is
ranked in the first position and for Bucklin in this election it only matters who is
ranked in one of the first two positions. In contrast to this, under Borda, a is also able
to gain points if it is ranked in the last position (so there exist single swaps by which
a can gain points which it has maybe lost by other swaps).
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that c1 is the Borda winner. However, the robustness of c1 for the
different rules varies substantially. For illustrative purposes, we
just compare STV and Copeland. For STV, note that initially either
c1 or cm is ranked in the first position in every vote (and both
appear roughly the same number of times in the first position).
Thus, also after some swaps are performed, it is likely that c1 and
cm are the last two non-eliminated candidates when computing
the STV winner. Accordingly, the election boils down to a pairwise
comparison between c1 and cm . For cm to win this comparison,
it needs to be in front of c1 in some votes where it was initially
behind c1. This requiresm− 1 specific swaps per vote, as in all such
votes v1 is initially ranked in the first and cm is ranked in the last
position. In contrast to this, for Copeland, in the initial election
c1 has score 9 and c2 has score 7 (because c2 wins the pairwise
comparison against all candidates except c1). Thus, for c1 to lose
the election, c2 only needs to win the pairwise comparison against
c1, which can be achieved by performing a single swap in x − y
of the votes where c1 is ranked in the first and c2 in the second
position.

Having explained the different behaviors of voting rules if we
reverse votes, let us remark that from a normative perspective it
seems to be more reasonable to expect that a winner in an election
generated from the Mallows model with norm-ϕ = 0 and 50%
reversion probability is not too robust. In the end, these elections
will always only be decided by the (small) difference between the
number of reversed and non-reversed sampled votes. So from this
perspective, Borda, Bucklin, and Copeland are advantageous here,
despite (and in fact because) they are less robust.

5 EXPERIMENTS ON REAL WORLD DATA
We analyze the robustness of real-world election winners. For this,
we not only use the original election data but also the original voting
rule. We address the following four questions: Q1. How sensitive
are election winners to equiprobable noise swaps in different types
of real-world elections? Q2. Are there real-world elections where
very few random swaps change the election outcome with high
probability? Q3. Do the winning probabilities of candidates behave
similarly in all “close” elections?Q4. Can the robustness of winners
to random swaps be assessed via alternative (simpler) measures?

To answer these questions, we consider two types of real-world
elections: sports elections and political elections. In Section 5.1 we
analyze the robustness of winners of the Formula 1 World Cham-
pionship. After that, in Section 5.2, we turn to high-stake political
elections. As voters in large political elections typically do not re-
veal their full preferences, we focus on first-past-the-post elections
where voters are partitioned into districts and each district sends
one representative to the parliament, and we study the robustness
of the party winning the most seats in such Plurality elections.

To assess candidates’ winning probabilities for different pertur-
bation levels we used the same procedure as in the previous section.
As described in Section 3, for each election E = (C,V ) we com-
puted PE;c (norm-ϕ) for norm-ϕ ∈ {0, 0.1, . . . , 1}. For each value of
norm-ϕ, we did so by sampling 500 elections where each votev ∈ V

is replaced by a vote drawn fromDv;norm-ϕ
Mallows and recording for each

candidate the fraction of these elections where it is a winner.

years scoring vector
2010-2018 s2018 = (25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, . . . , 0)
2003-2009 s2009 = (10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0)
1991-2002 s2002 = (10, 6, 4, 3, 2, 1, 0, . . . , 0)
1981-1990 s1990 = (9, 6, 4, 3, 2, 1, 0, . . . , 0)†

Table 1: Scoring vectors used in different editions of the For-
mula 1 World Championship. † : Between 1981 and 1990,
computing the final score of a candidate, instead of sum-
ming up its points from all races, only the 11 highest scores
were taken into account.

5.1 Formula 1
We consider the 38 editions of the Formula 1 World Championship
between 1981 and 2018, where in each year, between 20 to 47 drivers
competed in between 15 to 21 races.6 Each driver gets a certain
number of points from each race depending on its finishing position,
and the candidate with the highest number of points wins (this
can be interpreted as applying a positional scoring rule to the
corresponding election). Over the years, different scoring vectors
were used. We present them in Table 1.

5.1.1 General overview of results (Q1&Q2). Generally speaking, it
is surprising how fragile the victory of numerous Formula 1 world
champions was: The average 50%-winner threshold in our dataset
is only 0.367, and eight elections have a 50%-winner threshold be-
low 0.1. Going into more detail, in Figure 3, we visualize eight
elections of special interest. Figures 3a to 3f all display generally
quite close election: In all six the losing probability of the initial
winner is already above 10% at norm-ϕ = 0.0025. In 2007, where
norm-ϕ = 0.0025 corresponds to making on average 5 random
swaps in the whole election, the losing probability of the original
winner is even 22%. This is remarkable recalling that these elections
are not artificial examples but come from the real world and recall-
ing that we focus on random swaps, implying that there is also a
very high chance that none of the top candidates are involved in
a random swap, in which case the initial winner still wins. In the
2007 election, where the score of the red candidate is initially one
higher than the score of the blue and the black candidate, a possible
explanation for the observed general non-robustness is that the
scoring vector s2009 = (10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0) was used. Thus,
swapping down the red candidate in one vote or swapping up the
black or blue candidate in one vote can suffice to make the red
candidate lose the election, as a single swap can change scores by
two. In fact, taking a closer look, even in 20 out of the 357 elections
at swap distance 1 of this election the red candidate is not a winner.
This means that even if we just make a single random swap the
loosing probability of the red candidate is already 5.6%.

6In the corresponding election, we have one candidate for each driver and one voter
for each race ranking the drivers according to the finishing position of the driver in
this race. Drivers who did not participate in a race or did not finish it do not appear in
the respective vote. The elections were collected by Boehmer and Schaar [8].
7Remarkably, this means that the average 50%-winner threshold here is lower than
the average 50%-winner threshold of our considered rules on most of the Mallows
elections analyzed in Section 4. This is even more remarkable recalling that the voting
rules used in Formula 1 elections are rather on the robust side, as each voter awards
points to many different candidates.
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Fig. 3. Eight Formula 1 elections. We plot PE,c (norm-ϕ) (y-axis) as a function of norm-ϕ (x -axis) for the four most successful
candidates. For each candidate, the first legend entry displays the score of the candidate in the election according to the used voting
rule and the second entry displays its Borda score.

interest. Figures 3a to 3f all display generally quite close election: In all six the losing probability of the initial winner is
already above 10% at norm-ϕ = 0.0025. In 2007, where norm-ϕ = 0.0025 corresponds to making on average 5 random
swaps in the whole election, the losing probability of the original winner is even 22%. This is remarkable recalling that
these elections are not artificial examples but come from the real world and recalling that we focus on random swaps,
implying that there is also a very high chance that none of the top candidates are involved in a random swap, in which
case the initial winner still wins. In the 2007 election, where the score of the red candidate is initially one higher than
the score of the blue and the black candidate, a possible explanation for the observed general non-robustness is that the
scoring vector s2009 = (10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0) was used. Thus, swapping down the red candidate in one vote or
swapping up the black or blue candidate in one vote can suffice to make the red candidate lose the election, as a single
swap can change scores by two. In fact, taking a closer look, even in 20 out of the 357 elections at swap distance 1 of
this election the red candidate is not a winner. This means that even if we just make a single random swap the loosing
probability of the red candidate is already 5.6%.

5.1.2 Different types of close elections (Q3). While all six elections from Figures 3a to 3f were really close in the sense
that few random swaps can have a crucial influence on the outcome, the (non)-robustness of the winners in these
six elections still comes with quite different flavors. In Figures 3a and 3b, the blue candidates overtakes the initially
winning red candidate already at norm-ϕ = 0.0275 and afterwards consistently has a higher winning probability; in
such elections one could say that the winner won more by luck or accident than by merit, as in most elections close to
the original election a different candidate wins. Let us focus for a moment on the 1994 Formula 1 World Championship
with scoring vector s2002 = (10, 6, 4, 3, 2, 1, 0, . . . , 0), which consists of 16 races and was decided by one point (Figure 3a).
What stands out is that the red candidate won 8 of the 16 races and came in second in 2 races, but either did not
participate or did not complete the other 6 races. Thus, if we perform a single random swap involving the red candidate,
then in 8 cases he loses 4 points, in 2 cases he loses 2 points and in 2 cases he gains 4 points. Thus, for 10 out of 12
swaps involving the red candidate, the blue candidate wins the election after performing the swap (note, however,
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5.1.2 Di�erent types of close elections (Q3). While all six elec-
tions from Figures 3a to 3f were really close in the sense that few
random swaps can have a crucial influence on the outcome, the
(non)-robustness of the winners in these six elections still comes
with quite different flavors. In Figures 3a and 3b, the blue can-
didates overtakes the initially winning red candidate already at
norm-ϕ = 0.0275 and afterwards consistently has a higher winning
probability; in such elections one could say that the winner won
more by luck or accident than by merit, as in most elections close
to the original election a different candidate wins. Let us focus for a
moment on the 1994 Formula 1 World Championship with scoring
vector s2002 = (10, 6, 4, 3, 2, 1, 0, . . . , 0), which consists of 16 races
and was decided by one point (Figure 3a). What stands out is that
the red candidate won 8 of the 16 races and came in second in 2
races, but either did not participate or did not complete the other
6 races. Thus, if we perform a single random swap involving the
red candidate, then in 8 cases he loses 4 points, in 2 cases he loses
2 points and in 2 cases he gains 4 points. Thus, for 10 out of 12
swaps involving the red candidate, the blue candidate wins the
election after performing the swap (note, however, that only 7.4%
of all swaps involve one of the top-two candidates). Accordingly,
the general non-robustness of the red candidate here is due to the
fact that the red candidate is much more likely to lose points instead
of gaining more if few random swaps are performed.

In contrast to Figures 3a and 3b, in Figures 3c and 3d, the red
candidate starts to have roughly the same winning probability as
some other candidate(s) at small norm-ϕ, however with increasing
norm-ϕ the situation does not change. In such elections, it seems
that the red candidate’s victorywas very fragile and that the top-two
candidates are in fact of equal quality. Lastly, in Figures 3e and 3f,
while the red candidate already starts to have a significant loosing
probability at small norm-ϕ, its winning probability until norm-ϕ =

0.5 is always clearly the highest. In such elections it seems that
the red candidates victory is a bit fragile but still “justified” and
grounded on solid support.

5.1.3 Relationship between winner robustness and candidate scores
(Q4). Motivated by the observation that in all six considered close
elections the score difference between the winner and the runner-
up is between one and five and thus, in general, quite low, we now
discuss the capabilities of the difference of the score of the elec-
tion winner and runner-up to judge the robustness of winners. In
general, there clearly is some correlation: The PCC of the score dif-
ference and the 50%-winner threshold in the Formula 1 elections is
0.66 and, in particular, with increasing score difference, on average,
winners get substantially more robust. However, the correlation
is not strong and there also exist elections where there is a clear
difference: For instance, in 2010 (Figure 3g), the score difference
is six but the 50%-winner threshold is still only 0.0475 (and thus,
in particular much lower than in 2016 (Figure 3f) where the score
difference is five). In 2014 (Figure 3h), the score difference is 42 and
thus quite high, which is also reflected in a 50%-winner threshold
of 0.4325. However, remarkably, the initial winner’s loosing proba-
bility is already 1% at norm-ϕ = 0.0175 and 10% at norm-ϕ = 0.04,
indicating that the election was much closer than what is suggested
by the large score difference. Further, note that in 1988 (Figure 3b),
where the red candidate seems to have won more by luck or acci-
dent than by merit, the score difference is three, whereas in 2008
(Figure 3e), where the red candidate still dominates all other can-
didates in terms of winning probabilities even if many swaps are
performed, the score difference is only one.

A different possible approach to identify (different types of) close
elections could be to consider the candidates’ Borda score. The hope
here is that the Borda score captures the general strength of the
candidate in the election (which is not necessarily captured in the
Formula 1 score, as here only points for finishing in one of the
first positions are awarded). Generally speaking, the Borda score
correlates with our classification of the six close elections from
Figures 3a to 3f (see Section 5.1.2): In particular, if the Borda score
of one candidate is significantly higher than the scores of all other
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candidates, then this candidate will be the most probable winner for
medium and large values of norm-ϕ. However, also the Borda score
has some clear limitations: In 1988 (Figure 3b), the blue candidate
has a lead of 4 Borda points, while in 1981 (Figure 3c) its lead is
9 Borda points; nevertheless, in 1988 the blue candidate quickly
becomes the most probable winner, which does not happen in 1981.

5.2 Political Elections
After we have seen that sports elections regularly have non-robust
winners, we now turn to a different type of election, political elec-
tions, mainly focusing onQ1&Q2. As in large political elections full
preferences of voters are typically unknown, we study a specific
type of political election: Several countries around the world use
first-past-the-post voting in elections of different representative
bodies. In these elections, the voters are typically partitioned into
constituencies, with each constituency having its distinct candi-
dates. Each constituency then sends the candidate with the highest
number of votes to the representative body (and the representative
body only consists of these candidates). We analyze the robustness
of the strongest party in representative bodies elected by first-past-
the-post elections. For this, we identify each candidate running in
some constituency by its party. Then, we create one vote for each
constituency ranking in the ith position the party of the candidate
finishing in the ith position in this constituency (in all elections
we considered, there are never two candidates from the same party
running in one constituency). Now the Plurality score of a party
in the constructed election is the number of seats the party gets
in the representative body and the Plurality winner is the party
with the highest number of seats. Which party has won the most
seats in a representative body is of great practical importance, as
these parties are typically responsible for leading the formation
of a new government and in some elections also decide on who
should fill the most important political role (e.g., in UK general
elections the winning party usually decides on who should be the
Prime minister). Thus, if the robustness of the winning party is
low, then one might want to consider a recount of the ballots or
if the winner’s robustness is low in some polls, then parties have
additional motivation to mobilize as many voters as possible.

We observe that such political elections seem to be very robust
with the 50%-winner threshold typically being above 0.7 and are
thus in particular much more robust than the Formula 1 elections
considered in Section 5.1 and most of the synethetic elections ana-
lyzed in Section 4. Nevertheless, also non-robust winners regularly
occur, highlighting the relevance of searching for them.
5.2.1 Polish local elections. We analyze local council elections for
different Polish cities from 2014. In 2014, in all cities with up to
100 000 inhabitants a first-past-the-post system was used. For this,
all cities with up to 20 000/50 000/100 000 inhabitants where divided
into 15/21/23 constituencies. Our dataset consists of elections from
1317 cities (we did not include elections with an average vote length
below 3) each containing on average 8.6 candidates. Notably, out of
the 1317 elections 124 are tied. We generated the elections based on
data provided by the Jagiellonian Center for Quantitative Research
in Political Science.

Concerning the elections’ robustness, in a large majority of the
non-tied elections the winners are very robust; the average 50%-
winner threshold is 0.78 which is very high: In fact, only seven

elections have a 50%-winner threshold below 0.2 and only 98 have
a 50%-winner threshold below 0.5. Overall, this is good news in-
dicating that the considered type of political election is typically
quite robust to random noise and that one does not have to worry
about winners winning more by accident or luck than by merit.

Going into more details, in Figure 4, six exemplary elections
of special interest are shown. The two elections from Ozorków
(Figure 4a) andWałcz (Figure 4b) were both decided by a single point
(seat) and are in general quite close with a 50%-winner threshold
of 0.22 and 0.1, respectively. Moreover, in both elections the initial
winner has a 2% losing probability already at norm-ϕ = 0.0025,
which corresponds to making an expected number of around 0.37
swaps in the full election. While it might sound counter-intuitive
that a score difference of one can be overcome by making 0.37
swaps, note that this is due to the fact that the Mallows distribution
has some variance in the number of swaps that are performed.
To explain why winners have a non-negligible loosing probability
already for small norm-ϕ in these elections, note that, for instance,
in the election fromOzorków (Figure 4a) consisting of 10 candidates
and 15 voters, four voters rank the red candidate in the first position
and the blue candidate in the second position. As there are overall
87 different swaps, it follows that after making a single random
swap the losing probability of the red candidate is 4

87 = 4.6%. This
closeness highlights the importance of detecting such situations in
order to be able to double check the integrity of the results.

While such situations where already very few random swaps
can change the election winner with a non-negligible probability
occur mostly in elections with a score difference of one, there are
also some (less) extreme examples with a larger score difference.
For instance, in Oświęcim (Figure 4c), the score difference is three
but nevertheless, the loosing probability of the initial winner is
already 1% at norm-ϕ = 0.015 and 10% at norm-ϕ = 0.06 (which
corresponds to making an expected number of 2.3, respectively,
9 swaps in the whole election). In contrast to the former three
examples, there are also elections with very robust winners, even
several with just a score difference of one. The election in Księżpol
(Figure 4d) is an example; together with Figures 4a and 4b this
election also shows that only examining the Plurality scores is
insufficient to judge the robustness of electionwinners. This general
disconnect is also reflected in a low PCC of 0.48 between the score
difference and the 50%-winner threshold on the whole dataset.

Examining the 124 tied elections, interestingly, our approach is
able to identity different types of ties: On the one hand, we have
numerous tied elections where the winning probabilities of the
different initially winning candidates behave very similarly if more
and more swaps are performed (see Figure 4e for an example; this
election is also quite interesting because the initially third-ranked
candidate seems to be particularly strong). On the other hand, in
many of the tied elections, the winning probability of one of the
winners decreases much faster than for the other, indicating that
the later has a stronger general position in the election and is closer
to uniquely winning the election than the other candidate (see
Figure 4f for an example). This indicates that ties in elections might
be of a different nature and that our approach might be a first
possibility to better understand and identify them. In the analyzed
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Fig. 4. Six Poland elections. We plot PE,c (norm-ϕ) as a function of norm-ϕ for the four most successful candidates. The legend
displays the Plurality score and Borda score of each candidate in this order.
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winner is the party with the highest number of seats. Which party has won the most seats in a representative body is of
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winning party usually decides on who should be the Prime minister). Thus, if the robustness of the winning party is
low, then one might want to consider a recount of the ballots or if the winner’s robustness is low in some polls, then
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Concerning the elections’ robustness, in a large majority of the non-tied elections the winners are very robust; the
average 50%-winner threshold is 0.78 which is very high: In fact, only seven elections have a 50%-winner threshold
below 0.2 and only 98 have a 50%-winner threshold below 0.5. Overall, this is good news indicating that the considered
type of political election is typically quite robust to random noise and that one does not have to worry about winners
winning more by accident or luck than by merit.

Going into more details, in Figure 4, six exemplary elections of special interest are shown. The two elections from
Ozorków (Figure 4a) and Wałcz (Figure 4b) were both decided by a single point (seat) and are in general quite close
with a 50%-winner threshold of 0.22 and 0.1, respectively. Moreover, in both elections the initial winner has a 2% losing
probability already at norm-ϕ = 0.0025, which corresponds to making an expected number of around 0.37 swaps in the
full election. While it might sound counter-intuitive that a score difference of one can be overcome by making 0.37
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Figure 4: Six Poland elections.We plot PE;c (norm-ϕ) as a function of norm-ϕ for the fourmost successful candidates. The legend
displays the Plurality score and Borda score of each candidate in this order.

political elections, tie-breaking is of special importance because
usually one party is appointed to form a government.

5.2.2 UK general elections. We now turn to national elections in
the UK. In particular, we consider the twelve general elections (of
the House of Parliaments) in the UK which took place between 1974
and 2019. From this, we obtained twelve elections with between
9 and 13 candidates and 635 and 659 voters. The elections were
created by us based on data from the official website of the house
of commons, commonslibrary.parliament.uk.

As in the Polish local elections, in general the robustness of win-
ners is quite high in these elections; the average score difference
between the winner and the runner-up is with 118 also quite high.
In particular, only two out of the twelve analyzed elections have a
50%-winner threshold below 0.9; both of them are from the year
1974. In this year, there was one election in February and a reelec-
tion in October: The October election has a 50%-winner threshold
of 0.5 and a score difference of 42 (where only at norm-ϕ = 0.1
the winning probability of the initial winner drops below 99%).
Thus, in this election, the winner is still pretty robust. The February
election is much closer. This election consists of 635 votes over
twelve candidates with an average vote length of 3.3; the Labor
party won with 301 seats against the Conservative party with 297
seats. The 50%-winner threshold of this election is only 0.07, which
corresponds to performing 88.7 swaps in the whole election in
expectation. However, even for norm-ϕ = 0.01, which corresponds
to making 12.67 swaps in expectation, the losing probability of
the Labor party is already 11.7%.8 The general non-robustness of
the Labor parties victory in this election is also reflected in the
candidates’ Borda scores, as the Borda score of the Conservative
party is 95 points higher. To sum up, UK general elections seem
to be quite robust to our noise model; however, the February 1974
election constitutes a clear outlier as the win of the Labor party
in this election is fragile. In fact, the Labor party did not win the
absolute majority of seats in this election and, possibly as a conse-
quence of the non-robustness of their victory, coalition talks failed.
After the Labor party governed for a short time as a minority gov-
ernment, a reelection was initiated. In this reelection, the Labor
party won again but this times with a larger lead (also being robust
to random swaps). The clear difference between the two elections
which happened in the span of 8 months indicates that in political
elections a significant fraction of voters can change their mind

8Notably, even at norm-ϕ = 0:0025, which corresponds to making an expected
number of 3:2 swaps in the election, the losing probability is already 1% despite the
fact that the initial score difference is 4 (this is due to the fact that the Mallows model
has some variance in the number of swaps it actually applies).

shortly after an election. This additionally motivates the study of
the robustness of outcomes as an indicator for the likelihood that
the outcome still reflects the voter’s opinions even some time after
the election, and also motivates that larger numbers of random
swaps can realistically happen.

6 CONCLUSION
In this paper, we have studied how robust election winners are to
equiprobable random noise by comparing different voting rules
and computing and analyzing the robustness of real-world elec-
tion winners. As one of our highlights, we have identified many
real-world election winners that are very sensitive to random noise,
indicating the these elections were extremely close. Moreover, we
have illustrated that our approach can detect a variety of different
patterns and can differentiate between seemingly very similar elec-
tions. For future work it would be interesting to dive deeper into the
capabilities and limitations of our approach, for instance, by further
exploring the possibility to use it as a tie-breaking mechanism.

While we have already tried to make our experiments relevant
to practitioners, there is certainly room for improvement: Because
it is the (computationally) simpler and cleaner approach, we have
considered an unweighted model where each swap has the same
probability. However, this might not fully capture reality in all its
facets: For instance, in the Formula 1 elections, one could argue that
the probability of swapping two drivers in a race should be anti-
proportional to their difference in finishing time. Moving from the
unweighted to the weighted setting would also require collecting
the needed weighted data, which for some type of elections is also
simply not available. From a data collection point of view, it would
also be beneficial to collect the full preferences of voters in political
elections (and not only top-choices as it is usually done) to analyze
the robustness of large scale real-world political elections. Poll
stations are probably the most promising starting point here.
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